46 | 0 | 17 |
下载次数 | 被引频次 | 阅读次数 |
针对铁路工程沿线隧道洞渣产量大和天然河砂资源匮乏的现状,采用铁路隧道施工现场的花岗岩、片麻岩、白云岩洞渣加工成机制砂及碎石骨料,制备高强度C60混凝土,开展不同岩性洞渣混凝土微观结构对宏观力学性能影响研究。采用扫描电镜(Scanning Electron Microscope,SEM)和X射线计算机断层扫描(X-ray Computed Tomography,X-CT)图像分析法,测定三种岩性洞渣混凝土的微观形貌、孔结构及界面过渡区特征,通过力学性能对比分析微观结构参数对抗压、抗折强度的影响。结果表明:片麻岩洞渣混凝土孔隙率较低,初期界面过渡区结构较好,水化初期强度增长较快,但孔隙率及界面过渡区结构随龄期增长变化较小,水化后期强度增长较慢,骨料中裂隙较多,骨料强度较低,最终强度较低;花岗岩和白云岩洞渣混凝土随龄期增长孔隙率和界面过渡区结构得到优化,强度增长较快。白云岩洞渣混凝土中大尺寸(大于1 500μm)孔径孔隙率较高,但孔隙形态规则,多为球形,对强度影响较小。
Abstract:In response to the high production of tunnel slag and the scarcity of natural river sand resources along railway engineering lines, high-strength C60 concrete was prepared by processing granite, gneiss, and Baiyun cave muck from railway tunnel construction sites into machine-made sand and crushed stone aggregates. The influence of the microstructure of different rock lithologies of tunnel muck concrete on macroscopic mechanical properties was studied.Scanning Electron Microscope(SEM) and X-ray Computed Tomography(X-ray CT) image analysis methods were used to determine the microstructure, pore structure, and interfacial transition zone characteristics of three rock lithologies of tunnel muck concrete. The influence of microstructural parameters on compressive and flexural strength was analyzed by comparing mechanical properties. The results show that the porosity of gneiss tunnel muck concrete is low, the interfacial transition zone structure is well-developod, and the strength increases rapidly in the early stage of hydration.However, the porosity and interfacial transition zone structure change little with age, and the strength increases slowly in the later stages of hydration. There are many cracks in the aggregate, and the aggregate strength is low, resulting in a lower final strength. The porosity and interfacial transition zone structure of granite and Baiyun cave slag concrete are optimized with increasing age, and the strength increases rapidly. The large pore size, which is greater than 1500 μm, in the Baiyun cave slag concrete has a high porosity. But the pore morphology is regular, mostly spherical, and has little effect on the strength.
[1]鲍学英,李雨浓.艰险山区铁路机制砂混凝土绿色度评价研究[J].铁道工程学报,2021,38(9):81-86,105.
[2]赵有明,韩自力,李化建,等.我国铁路工程机制砂混凝土应用现状及存在问题[J].中国铁路,2019(8):1-7.
[3]郑晓冬,管志涛,李超,等.隧道花岗岩洞渣骨料在C50混凝土预制T梁中的应用研究[J].混凝土与水泥制品,2020(12):40-44,49.
[4]韩斌,赵爽,吴庆勇,等.隧道洞渣机制砂的颗粒形貌参数对砂浆性能的影响[J].混凝土与水泥制品,2023(10):72-77.
[5]VOIT K,MURR R,CORDES T,et al.Tunnel Spoil Recycling for Concrete Production at the Brenner Base Tunnel in Austria[J].Structural Concrete,2020,21(6):2795-2809.
[6]罗涵欣,黄靓,刘文琦,等.隧道洞渣粗骨料混凝土抗冻性能试验研究[J].混凝土,2024(2):157-161.
[7]田建国.花岗岩洞渣在抗渗混凝土中的应用性能研究[J].交通科学与工程,2024,40(3):9-16.
[8]SCRIVENER K L. Backscattered Electron Imaging of Cementitious Microstructures:Understanding and Quantification[J].Cement and Concrete Composites,2004,26(8):935-945.
[9]黄法礼,李化建,王振,等.隧道洞渣建筑材料资源化应用研究现状与存在问题分析[J].中国铁路,2019(8):14-18.
[10]王晓波,亢泽千,孔亚宁,等.母岩类型和岩性对混凝土骨料性能的影响[J].混凝土,2023(3):77-80,85.
[11]高辉,张雄,张永娟.混凝土气孔结构对其强度及界面过渡区的影响[J].同济大学学报(自然科学版),2014,42(5):751-756.
[12]高翔.水泥基材料微观表征技术的研究及应用[D].南京:东南大学,2018.
[13]AHAMAD M S S,MAIZUL E N M.Digital Analysis of Georeferenced Concrete Scanning Electron Microscope(SEM)Images[J]. Civil and Environmental Engineering Reports,2020,30(2):65-79.
[14]EDWIN R S,MUSHTHOFA M,GRUYAERT E,et al.Quantitative Analysis on Porosity of Reactive Powder Concrete Based on Automated Analysis of Back-scatteredelectron Images[J].Cement and Concrete Composites,2019,96:1-10.
[15]LEITE M B,MONTEIRO P J M. Microstructural Analysis of Recycled Concrete Using X-ray Microtomography[J].Cement and Concrete Research,2016,81:38-48.
[16]WONG H S,HEAD M K,BUENFELD N R. Pore Segmentation of Cement-based Materials from Backscattered Electron Images[J].Cement and Concrete Research,2006,36(6):1083-1090.
[17]XIAO J Z,LV Z Y,DUAN Z H,et al. Pore Structure Characteristics,Modulation and Its Effect on Concrete Properties:A Review[J]. Construction and Building Materials,2023,397(9):132430.
[18]周晋辉,郭晓阳,赵博,等.煤岩体系微观组分及孔隙结构对甲烷吸附的影响研究[J].矿业安全与环保,2024,51(1):51-60,69.
[19]吴中伟.水泥基材料科学导论[M].北京:科学出版社,1978:92-107.
[20]MU J L,LI Y,LIN H,et al. Research on the Effect of Lithological Characteristics of Manufactured Sand on the Strength of Mortar[J].Journal of Building Engineering,2023,77:107495.
[21]黄燕,胡翔,史才军,等.混凝土中水泥浆体与骨料界面过渡区的形成和改进综述[J].材料导报,2023,37(1):106-117.
基本信息:
DOI:
中图分类号:TU528;U215;U455
引用信息:
[1]王涛,陈胜利,葛祥坤.典型岩性洞渣骨料混凝土微观结构对宏观力学性能的影响[J].铁道建筑,2025,65(05):150-156.
基金信息:
中国铁道科学研究院集团有限公司基金(2022YJ119)