| 2 | 0 | 8 |
| 下载次数 | 被引频次 | 阅读次数 |
为探究滑靴型面动态变化对受流器通过接触轨端部弯头时振动冲击的影响,根据实测受流器参数和端部弯头标准,建立受流器-接触轨端部弯头耦合动力学模型,设置服役里程0、2×104、4×104、6×104 km四种滑靴磨耗型面,研究了1∶40、1∶50、1∶60、1∶70四种坡度端部弯头和60、80、100 km/h三种运行速度下滑靴型面演变对受流器通过接触轨端部弯头时垂向位移、垂向接触力、垂向振动加速度和离线时间的影响规律。结果表明:在同一弯头坡度和运行速度下,滑靴型面演变对入轨动态性能影响较小,对直线轨和离轨影响较大;减小弯头坡度和运行速度,能有效缓解滑靴型面演变对受流器通过直线轨和离轨时动态冲击的影响程度。
Abstract:To investigate the influence of dynamic changes in the sliding boot profile on the vibration and impact of the current collector passing through the contact rail end elbow, a coupled dynamic model of the current collector-contact rail end elbow was established based on measured elbow collector parameters and end elbow standards. Four types of sliding boot wear profile were set up with service mileage of 0, 2 × 104 km, 4 × 104 km, and 6 × 104 km. The influence of the evolution of sliding boot profile on the vertical displacement, vertical contact force, vertical vibration acceleration, and offline time of the current collector passing through the contact rail end elbow was studied for four slope end elbow of 1∶40, 1∶50, 1∶60, and 1∶70 and three operating speeds of 60 km/h, 80 km/h, and 100 km/h. The results show that under the same elbow slope and operating speed, the evolution of the sliding boot profile has a relatively small impact on the dynamic performance of the track entry, but has a greater impact on the straight and off track. Reducing the elbow slope and operating speed can effectively alleviate the impact of the evolution of the sliding boot profile on the dynamic impact of the current collector passing through the straight track and off track.
[1]WESTON P F,STEWART E,ROBERTS C,et al.Measuring the Dynamic Interaction Between Electric Vehicle Shoegear and the Third Rail[C/OL]//IET. International Conference on Railway Engineering-Challenges for Railway Transportation in Information Age,2008. HongKong,2008[2024-10-21].https://doi.org/10.1049/ic:20080003.
[2]STEWART E,WESTON P,HILLMANSEN S,et al. Using Bogie-mounted Sensors to Understand the Dynamics of Third Rail Current Collection Systems[J]. Proceedings of the Institution of Mechanical Engineers,Part F:Journal of Rail and Rapid Transit,2011,225(2):219-227.
[3]滕腾.随机振动下受电靴与第三轨接触振动规律研究[D].北京:北京交通大学,2012.TENG Teng. Research on Contact Vibration Law Between Collector Shoe and Third Rail Under Random Vibration[D].Beijing:Beijing Jiaotong University,2012.
[4]李国富.第三轨受流系统刚柔耦合动力学研究[D].北京:北京交通大学,2015.LI Guofu. Study on Rigid-Flexible Coupling Dynamics of Third Rail Current Collection System[D]. Beijing:Beijing Jiaotong University,2015.
[5]GUAN J F,WU J Q,ZHONG Y. Dynamics Analysis of Electric Shoegear and Conductor Rail System[J]. Journal of Vibroengineering,2014,16(4):1992-2007.
[6]吴旭,胡俊雄,罗世辉,等.阶跃不平顺下接触刚度对受流质量影响分析[J].机械,2021,48(4):41-47.WU Xu,HU Junxiong,LUO Shihui,et al.Influence of Contact Stiffness on Current Collection Quality Under the Condition of Step Irregularity[J].Mechanics,2021,48(4):41-47.
[7]刘铭.160 km/h磁浮列车靴轨系统动力学研究[D].成都:西南交通大学,2018.LIU Ming. Research on Dynamics of the 160 km/h Maglev Train Collector Shoe and Contact Rail System[D].Chengdu:Southwest Jiaotong University,2018.
[8]金伟.计及线路影响的地铁靴轨系统动力学特性研究[D].成都:西南交通大学,2022.JIN Wei. Research on Dynamic Characteristics of Subway Shoegear and Conductor Rail System Considering Line Influence[D].Chengdu:Southwest Jiaotong University,2022.
[9]喻文彬.考虑接触轨轨缝的靴轨系统动态特性研究[J].机车电传动,2023(2):136-141.YU Wenbin. Research on Dynamic Characteristics of Shoegear-conductor Rail System Considering Conductor Rail Joint Gap[J].Electric Transmission of Locomotives,2023(2):136-141.
[10]王文娇.受流器与接触轨端部弯头接触特性分析[J].华东交通大学学报,2014,31(1):34-38.WANG Wenjiao.Analysis on Contact Characteristics Between Collector and Third Rail End[J]. Journal of East China Jiaotong University,2014,31(1):34-38.
[11]郎鹏.受流器/三轨弯头碰撞动力学研究[D].北京:北京交通大学,2016.LANG Peng.Research on Impact Dynamics of Collector/Third Rail Ends[D].Beijing:Beijing Jiaotong University,2016.
[12]向枭笛,罗湘萍,宫政,等.准高速条件下三轨受流器靴轨动态接触分析[J].机械工程学报,2020,56(20):185-194.XIANG Xiaodi,LUO Xiangping,GONG Zheng,et al.Dynamic Contact Analysis of Current Collector Shoe and Third Rail Under Quasi High Speed Condition[J]. Transactions of the Chinese Society of Mechanical Engineering,2020,56(20):185-194.
[13]周煜东,伍道乐,谢利勤.第三轨受流器动态特性试验研究[J].电力机车与城轨车辆,2023,46(4):85-88,108.ZHOU Yudong,WU Daole,XIE Liqin.Experimental Study on Dynamic Characteristics of Third Rail Current Collector[J].Electric Locomotives and Urban Rail Vehicles,2023,46(4):85-88,108.
[14]王鹏,骆海坤.城市轨道交通第三轨受流器动态特性试验及分析[J].城市轨道交通研究,2018,21(7):117-121,144.WANG Peng,LUO Haikun.Dynamic Characteristic Test and Analysis of Urban Rail Transit Third Rail Collecto[J].Urban Rail Transit Research,2018,21(7):117-121,144.
[15]申琦.160 km/h受流器动态特性研究[D].北京:北京交通大学,2022.SHEN Qi.Research on Dynamic Characteristics of 160 km/h Current Collector[D]. Beijing:Beijing Jiaotong University,2022.
[16]张真浩.第三轨/受流器系统激扰模型研究[D].北京:北京交通大学,2021.ZHANG Zhenhao.Research on Excitation Disturbance Model of Third Rail/Current Collector System[D]. Beijing:Beijing Jiaotong University,2021.
[17]宁晓芳.受流器/第三轨系统受流质量评价指标研究[D].北京:北京交通大学,2019.NING Xiaofang.Study on the Evaluation Index of the Current Collecting Quality of the Third-rail Power Supply System[D].Beijing:Beijing Jiaotong University,2019.
基本信息:
DOI:
中图分类号:U264.34;U231.8
引用信息:
[1]邢彤,李嘉祺,潘利科,等.城市轨道交通受流器与接触轨端部弯头动态特性[J].铁道建筑,2025,65(10):38-44.
基金信息:
中国铁道科学研究院集团有限公司基金(2023YJ286)