30 | 0 | 30 |
下载次数 | 被引频次 | 阅读次数 |
目前,对于断层错动下加筋铁路路基变形机制的研究仍有限,影响了对加筋铁路路基抗错动性能的科学评价。基于自主研发的断层错动模型试验装置开展了室内模型试验,对有无加筋铁路路基的变形机制进行了对比研究。结果表明:在逆断层错动的作用下,土工格栅能够有效抑制路基内部出现的张拉破裂,并能够一定程度上减轻断层固定盘上方路基挤压型破碎带的破碎程度,减小路基变形破坏范围;相较于未加筋路基,土工格栅加筋路基面变形更缓和,线路竖向平顺性得到了改善;土工格栅在一定程度上改善了断层错动下路基附近地基的稳定性。
Abstract:At present, there is little research on the deformation mechanism of reinforced railway subgrade under fault dislocation, which affects the evaluation of the dislocation-resistance performance of reinforced railway subgrade. Using the self-developed fault dislocation model test equipment, model tests were carried out. The deformation mechanisms of reinforced railway subgrade were compared with those of unreinforced railway subgrade. The results show that under the reverse fault dislocation, geogrid can effectively restrain the tension fractures in the subgrade. It can also reduce the crushing degree of the subgrade compression crush zones above the fault fixed plate and reduce, to a certain extent, the deformation and failure range of the subgrade. Compared with the unreinforced subgrade, the deformation of geogrid reinforced subgrade surface is more moderate. The vertical smoothness of the line is improved. Geogrid can improve the stability of the foundation near the subgrade under fault dislocation to a certain extent.
[1]BAI M K, CHEVALIER M L, LELOUP P H, et al. Spatial Slip Rate Distribution Along the SE Xianshuihe Fault,Eastern Tibet, and Earthquake Hazard Assessment[J].Tectonics,2021,40(11):e2021TC006985.
[2]LIU J H, HU J, LI Z, et al. Three-dimensional Surface Displacements of the 8 January 2022 Mw6.7 Menyuan Earthquake, China from Sentinel-1 and AlOS-2 SAR observations[J]. Remote Sensing,2022,14(6):1404.
[3]岳茂,马洪生,苏珂,等.循环位移荷载作用下路基动力响应特征[J].铁道建筑,2023,63(5):145-148.
[4]安再展,蔡德钩,叶阳升,等.基于连续检测的高速铁路路基压实质量控制方法[J].铁道建筑,2024,64(2):13-19.
[5]马超.地震条件下跨断层区段轨道变形特征及动力影响研究[D].北京:北京交通大学,2023.
[6]侯甲庆.高填方路堤在隐伏走滑断层错动下减震措施及破坏模式研究[D].成都:西南交通大学,2013.
[7]黄俊,杨江,夏界宁,等.高速铁路强震台站与国家强震台站地震记录对比分析[J].大地测量与地球动学,2024,44(10):1082-1088.
[8]潘振,谢铠泽,马战国.路基区段有砟轨道无缝线路震后稳定性分析[J].铁道建筑,2022,62(1):39-42.
[9]张建毅.工程场地活断层避让距离研究[D].哈尔滨:中国地震局工程力学研究所,2015.
[10]刘阳.肯尼亚裂谷基岩破裂型地裂缝成因机制以及防控对策研究[D].西安:长安大学,2023.
[11]张炳焜.倾滑断层作用下上覆土层响应分析及跨断层路堤减隔震措施研究[D].成都:西南交通大学,2012.
[12]黄强兵,王涛,刘悦,等.跨地裂缝带高铁路基动力响应及CFG桩地基加固优化研究[J].铁道学报,2020,42(1):103-111.
[13]纪宇.走滑断裂带活动对路基稳定性的影响及工程抗断技术研究[D].兰州:兰州交通大学,2021.
[14]张建经,司长亮,赵永军,等.隐伏逆冲断层上填方路基加固措施与变形破坏模式探究[J].岩土力学,2013,34(9):2460-2467.
[15]YAZDANDDOUST M. Seismic Performance of Soil-nailed Walls Using a 1g Shaking Table[J]. Canadian Geotechnical Journal,2018,55(1):1-18.
[16]HU H Q, HUANG Y, XIONG M, et al. Investigation of Seismic Behavior of Slope Reinforced by Anchored Pile Structures Using Shaking Table Tests[J]. Soil Dynamics and Earthquake Engineering,2021,150(11):106900.
[17]QU H L, LUO H, HU H G, et al. Dynamic Response of Anchored Sheet Pile Wall Under Ground Motion:Analytical Model with Experimental Validation[J]. Soil Dynamics and Earthquake Engineering,2018,115(12):896-906.
[18]国家铁路局.铁路路基设计规范:TB 10001—2016[S].北京:中国铁道出版社,2016.
基本信息:
DOI:
中图分类号:U213.1
引用信息:
[1]梁经纬,蔡德钩,闫宏业等.逆断层错动对土工格栅加筋铁路路基变形的影响[J].铁道建筑,2025,65(06):13-18.
基金信息:
中国铁道科学研究院集团有限公司基金(2021YJ314); 腾讯科学探索奖(2022)