| 5 | 0 | 12 |
| 下载次数 | 被引频次 | 阅读次数 |
太阳辐射作用下高速磁浮板式轨道梁的温度分布不均匀,容易引起变形、开裂,须在轨道设计中考虑温度的影响。本文基于热传学理论,建立了高速磁浮新型板式轨道-桥梁耦合模型并进行了验证;对其进行一天内瞬态热分析,得到了日照辐射荷载作用下板式轨道-桥梁的温度场分布特性;进而探究了瞬态热作用下结构的垂向、横向变形规律。结果表明:板式轨道-桥梁结构表面温度最大值为53.7℃。日照升温温差作用下,轨道-桥梁的竖向、纵向变形明显,最大值分别为3.59、2.87 mm,最大横向变形仅1.26 mm;板式轨道悬浮面上拱变形明显,最大达3.5 mm,而横向变形相对较小。竖向日照反温差作用下,轨道和桥梁竖向下挠变形明显,跨中截面下挠变形最大,为2.6 mm,横向变形相对较小;轨道悬浮面竖向变形较为明显,最大为1.96 mm。温度梯度引起的变形均未超过规范限值。
Abstract:The temperature distribution of high speed maglev slab track beams under solar radiation is uneven, which can easily cause deformation and cracking. The influence of temperature must be considered in track design. Based on the theory of thermal transfer, and a new type of high speed maglev slab track-bridge coupling model was first established and verified. A one-day transient thermal analysis was conducted to obtain the temperature field distribution characteristics of the slab track-bridge under the influence of solar radiation load. The vertical and lateral deformations of the structure under transient thermal effects were investigated based on its temperature field distribution. The results show that the maximum surface temperature of the slab track-bridge structure is 53.7 ℃. Under the effect of temperature difference caused by sunlight, the vertical and longitudinal deformations of the track-bridge are significant, with maximum vertical and longitudinal deformations of 3.59 and 2.87 mm, respectively, and the maximum lateral deformation of only 1.26 mm. The arch deformation on the suspended surface of the slab track is significant, reaching up to 3.5 mm, while the lateral deformation is relatively small. Under the effect of vertical sunlight and temperature difference, the vertical deflection deformation of the track and bridge is significant, with the maximum deflection deformation at the mid span section of 2.6 mm, and the lateral deformation is relatively small. The vertical deformation of the track suspended surface is relatively obvious, with a maximum of 1.96 mm. The deformation caused by temperature gradient does not exceed the specified limit.
[1]赵春发,翟婉明.磁浮车辆/轨道系统动力学(Ⅱ):建模与仿真[J].机械工程学报,2005,41(8):163-175.ZHAO Chunfa,ZHAI Wanming.Dynamics of Maglev Vehicle/Guideway Systems(Ⅱ):Modeling and Simulation[J].Journal of Mechanical Engineering,2005,41(8):163-175.
[2]ZHAO C F,ZHAI W M. Maglev Vehicle/Guideway Vertical Random Response and Ride Quality[J]. Vehicle System Dynamics,2002,38(3):185-210.
[3]李伟强,冯洋,赵春发.桥梁竖向变形引起的中低速磁浮轨道不平顺分析[J].铁道标准设计,2021,65(6):77-82.LI Weiqiang,FENG Yang,ZHAO Chunfa.Analysis on Track Irregularities of Medium-low Speed Maglev Transit Induced by Bridge Deformation[J].Railway Standard Deign,2021,65(6):77-82.
[4]张凯,赵春发,蔡文峰,等.低速磁浮轨道梁的温度效应分析[J].铁道标准设计,2013,57(10):73-77.ZHANG Kai,ZHAO Chunfa,CAI Wenfeng,et al. Temperature Effect of Guideway Girder for Low-speed Maglev Transit[J].Railway Standard Deign,2013,57(10):73-77.
[5]WU D H,SUN X D,CHANG Y,et al.The Temperature Effect Analysis of High-speed Maglev Transit[C]//Associa-tion for Computing Machinery.2019 4th International Confe-rence on Automatic Control and Mechatronic Engineering(ACME2019). New York:ACM,2019:145-150.
[6]李国强,王琛奥,王志鲁.磁浮钢箱梁日照作用对车桥耦合振动的影响[J].振动、测试与诊断,2021,41(5):847-854,1028.LI Guoqiang,WANG Chen’ao,WANG Zhilu.Thermal Effect for Steel Box Maglev Guideway on Vehicle-Bridge Coupled Vibration Response[J].Journal of Vibration, Measurement&Diagnosis,2021,41(5):847-854,1028.
[7]顾芸,滕念管.温差作用下磁浮轨道梁变形分析及比较[J].铁道建筑,2011,51(6):18-20.GU Yun,TENG Nianguan. Analysis and Comparison of Maglev Guidway Deformation Under Action of Temperature Difference[J].Railway Engineering,2011,51(6):18-20.
[8]苏靖海,段树金.钢-混凝土双面组合箱梁日照温度效应研究[J].石家庄铁道大学学报(自然科学版),2013,26(4):11-14.SU Jinghai,DUAN Shujin. Study of Temperature Effects of Double Steel-Concrete Composite Box Girder by Solar Radiation[J]. Journal of Shijiazhuang Tiedao University(Natural Science Edition),2013,26(4):11-14.
[9]武庆祥,龙佩恒,焦驰宇.北京地区某钢-混组合箱梁日照温度场研究[J].北京建筑大学学报,2016,32(2):22-27.WU Qingxiang,LONG Peiheng,JAIO Chiyu. Temperature Analysis of Steel-Concrete Composite Girder Caused by Solar Radiation[J]. Journal of Beijing University of Civil Engineering and Architecture,2016,32(2):22-27.
[10]邹波,滕念管.混凝土单箱双室磁浮轨道梁的日照温度场分布研究[J].铁道标准设计,2019,63(4):96-101,106.ZOU Bo,TENG Nianguan. Temperature Field Analysis of Concrete Twin-celled Single Box Maglev Guideway Caused by Solar Radiation[J].Railway Standard Design,2019,63(4):96-101,106.
[11]莫然,滕念管.高速磁浮组合式轨道梁的温度变形[J].铁道建筑,2020,60(11):16-20,32.MO Ran, TENG Nianguan. Temperature Deformation of Composite Track Girder of High Speed Maglev[J]. Railway Engineering,2020,60(11):16-20,32.
[12]王胤淇,滕念管.考虑内腔空气影响的高速磁浮轨道箱梁日照温度场研究[J].铁道建筑,2022,62(2):94-99.WANG Yingqi,TENG Nianguan. Research on Temperature Field Caused by Solar Radiation of High Speed Maglev Track Box Girder Considering Influence of Inner Cavity Air[J].Railway Engineering,2022,62(2):94-99.
[13]文泉,王春江,孙向东,等.高速磁浮整体式预应力轨道梁温度场与变形分析[J].铁道科学与工程学报,2022,19(5):1168-1176.WEN Quan,WANG Chunjiang,SUN Xiangdong,et al.Temperature Field and Deformation of High-speed Maglev Prestressed Overall Guideway Beam[J]. Journal of Railway Science and Engineering,2022,19(5):1168-1176.
[14]刘德军,梅甫良.中低速磁浮单线轨道梁日照温度场分析[J].山西建筑,2021,47(21):5-8.LIU Dejun,MEI Fuliang. Study on Temperature Field of Single Lane Maglev Guideway Caused by Solar Radiation[J].Shanxi Architecture,2021,47(21):5-8.
[15]龚俊虎,谢海林,鄢巨平.高速磁浮梁轨分离式桥梁与轨道设计和创新[J].铁道科学与工程学报,2021,18(3):564-571.GONG Junhu, XIE Hailin, YAN Juping. Design and Innovation of Beam-track Separated Bridge and Track in High-speed Maglev[J]. Journal of Railway Science and Engineering,2021,18(3):564-571.
[16]张建荣,徐向东,刘文燕.混凝土表面太阳辐射吸收系数测试研究[J].建筑科学,2006(1):42-45.ZHANG Jianrong,XU Xiangdong,LIU Wenyan.A Test Study on the Solar Radiation Absorption Coefficient of Concrete Surface[J].Building Science,2006(1):42-45.
[17]彭友松.混凝土桥梁结构日照温度效应理论及应用研究[D].成都:西南交通大学,2007.PENG Yousong.Studies on Theory of Solar Radiatin Thermal Effects on Concrete Bridges with Application[D]. Chengdu:Southwest Jiaotong University,2007.
基本信息:
DOI:
中图分类号:U237;U213.21
引用信息:
[1]魏凌云,彭也也,赵春发,等.日照作用下高速磁浮交通桥上板式轨道结构温度场分布及变形特性[J].铁道建筑,2025,65(12):1-7.
基金信息:
国家自然科学基金(52172375); 中铁第四勘察设计院集团有限公司科技开发计划(2022K015)