94 | 0 | 95 |
下载次数 | 被引频次 | 阅读次数 |
强度折减法通过对强度参数进行等比例折减使边坡渐进发生失稳破坏,但等比例强度折减计算结果存在失稳边坡体内部塑性区域过大、参数弱化路径比例不变等缺点,与客观现象不符。本文提出一种新的强度折减思路,首先以全局失稳状态下边坡体内部贯通的剪切塑性应变为基础,利用自编程序语言提取出失稳单元作为参数折减对象,然后在折减的过程中反映参数的动态劣化路径,最终以强度储备面积计算边坡稳定性系数。计算结果表明:基于Drucker-Prager(D-P)准则的局部非等比例强度折减计算结果较传统强度折减法效果更好,误差更小。由于真实考虑到折减区域、参数路径,边坡失稳过程中塑性区域最早出现在坡脚,随着折减参数的不断增大,塑性区域逐渐向上发展最终贯通整个模型,边坡变形较传统方法偏小,局部非等比例强度折减思路避免了折减范围过大导致的塑性破坏区失真现象,为强度折减法更有效地应用于边坡稳定性分析提供了有效途径。
Abstract:The strength reduction method simulates the progressive instability and failure of slopes by proportionally reducing strength parameters. However, the equal-proportional strength reduction method has shortcomings such as excessively large plastic zones within the unstable slope and constant parameter weakening paths, which do not align with objective phenomena. This paper proposed a novel strength reduction approach. Firstly, based on the shear plastic strain that penetrates the slope body under a global instability state, a self-programmed language was used to extract unstable elements as the objects of parameter reduction. Secondly, dynamic deterioration paths of parameters were reflected during the reduction process. Finally, the slope stability factor was calculated using the strength reserve area.Numerical examples demonstrate that the local non-proportional strength reduction method based on the Drucker-Prager(D-P) criterion yields better results and smaller errors compared to the traditional strength reduction method. By realistically considering the reduction area and parameter paths, plastic zones first appear at the slope toe during the slope failure process. As the reduction parameters continuously increase, the plastic zones gradually develop upward and eventually penetrate the entire model. The slope deformation is smaller than that in traditional methods. The local non-proportional strength reduction approach avoids the distortion of plastic failure zones caused by excessive reduction scopes, providing an effective way to apply the strength reduction method more efficiently in slope stability analysis.
[1]董晓红,梁桂兰,许忠厚.边坡稳定分析方法综述及发展趋势研究[J].水利与建筑工程学报,2012,10(5):100-102,106.
[2]高玉峰,王迪,张飞.三维土质边坡稳定性分析方法研究现状与展望[J].河海大学学报(自然科学版),2015,43(5):456-464.
[3]张鲁渝,郑颖人,赵尚毅,等.有限元强度折减系数法计算土坡稳定安全系数的精度研究[J].水利学报,2003(1):21-27.
[4]梁庆国,李德武.对岩土工程有限元强度折减法的几点思考[J].岩土力学,2008,29(11):3053-3058.
[5]赵尚毅,郑颖人,时卫民,等.用有限元强度折减法求边坡稳定安全系数[J].岩土工程学报,2002,24(3):343-346.
[6]郑颖人,赵尚毅,宋雅坤.有限元强度折减法研究进展[J].后勤工程学院学报,2005,21(3):1-6.
[7]郑颖人,赵尚毅.岩土工程极限分析有限元法及其应用[J].土木工程学报,2005,38(1):91-98,104.
[8]郑颖人,赵尚毅.用有限元强度折减法求边(滑)坡支挡结构的内力[J].岩石力学与工程学报,2004,23(20):3552-3558.
[9]郑颖人,赵尚毅.有限元强度折减法在土坡与岩坡中的应用[J].岩石力学与工程学报,2004,23(19):3381-3388.
[10]唐芬,郑颖人.边坡渐进破坏双折减系数法的机理分析[J].地下空间与工程学报,2008,4(3):436-441,464.
[11]唐芬,郑颖人,赵尚毅.土坡渐进破坏的双安全系数讨论[J].岩石力学与工程学报,2007,26(7):1402-1407.
[12]薛海斌,党发宁,尹小涛,等.边坡强度参数非等比例相关联折减法研究[J].岩石力学与工程学报,2015,34(增刊2):4005-4012.
[13]韩龙强,吴顺川,李志鹏.基于Hoek-Brown准则的非等比强度折减方法[J].岩土力学,2016,37(增刊2):690-696.
[14]袁维,李小春,王伟,等.一种双折减系数的强度折减法研究[J].岩土力学,2016,7(8):2222-2230.
[15]赵炼恒,曹景源,唐高朋,等.基于双强度折减策略的边坡稳定性分析方法探讨[J].岩土力学,2014,35(10):2977-2984.
[16]赵尚毅,郑颖人,刘明维,等.基于Drucker-Prager准则的边坡安全系数定义及其转换[J].岩石力学与工程学报,2006,25(增刊1):2730-2734.
[17]唐芬,郑颖人.基于双安全系数的边坡稳定性分析[J].公路交通科技,2008,25(11):39-44.
[18]JIANG M J,ZHANG F G,THORNTON C.A Simple Threedimensional Distinct Element Modeling of the Mechanical Behavior of Bonded Sands[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2015,39(16):1791-1820
[19]YUAN W,BAI B,Ll X C,et al.A Strength Reduction Method Based on Double Reduction Parameters and Its Application[J].中南大学学报(英文版),2013,20(9):2555-2562.
[20]朱彦鹏,杨晓宇,叶帅华,等.双强度折减法的量化分析[J].冰川冻土,2016,38(4):880-888.
基本信息:
DOI:
中图分类号:TU43
引用信息:
[1]王瑞鹏,蔡德钩,尧俊凯等.基于D-P准则的局部非等比例强度折减法[J].铁道建筑,2025,65(03):14-20.
基金信息:
中国铁道科学研究院集团有限公司基金(2021YJ314,2023QT002); 国家自然科学基金(52308471)