| 1 | 0 | 5 |
| 下载次数 | 被引频次 | 阅读次数 |
对郑渝高铁大跨连续刚构拱组合桥开展了桥上小阻力扣件测试、钢轨伸缩调节器状态监测、桥上无缝线路锁定轨温测试、线路服役性能动态检测等研究。结果表明:大跨连续刚构拱组合桥上无缝线路总体状态良好,各项监测指标正常;现场铺设的W300-1型小阻力扣件总体使用状况良好,但需关注梁端轨下垫板的纵向窜动问题;现场钢轨锈蚀严重,建议进行定期的钢轨维护和锈蚀处理,保持扣件与钢轨之间的良好接触和摩擦因数;三座典型大跨桥中全桥铺设小阻力扣件的两座实际锁定轨温低于台账记录值,这与连续刚构拱组合桥上梁轨相互作用影响有关,在主桥跨中位置无缝线路纵向力处于较低水平;结合线路服役性能动态检测结果,线路TQI值、轨距、水平、高低、轨向、三角坑等线路几何状态参数变化均满足现有规范要求。
Abstract:Research has been conducted on the small resistance fastener testing, rail expansion joint monitoring, stress-free temperature testing, and dynamic performance testing of the Zhengzhou-Chongqing high speed railway longspan continuous rigid frame arch composite bridges. The research results indicate that the overall condition of the CWR(Continuous Welded Rail) track on the long-span continuous rigid frame arch composite bridges ars good, and all monitoring indicators are normal. The W300-1 type low resistance fasteners laid on site are generally in good working condition, but attention should be paid to the longitudinal movement of the beam end rail pad. Due to severe corrosion of the rails, it is recommended to conduct regular maintenance and rust treatment of the rails to maintain good contact and friction coefficient between the fasteners and the rails. The tests show that the actual stress-free temperature of two of the three typical long-span bridges with low resistance fasteners installed on the entire bridge is lower than the recorded stress-free temperature in the ledger.This is related to the interaction between the beam and track on the continuous rigid arch combination bridge. The longitudinal force in the mid-span of the main span is at a relatively low level. Based on the dynamic testing results of the line's service performance, the changes in the geometric state parameters of the line, such as TQI(Track Quality Index), track gauge, level, height, track orientation, triangular pits, all meet the requirements of existing specifications.
[1]李克冰,张迪,李奇,等.桥上无缝线路扣件纵向阻力试验研究[J].铁道建筑,2024,64(4):34-38.LI Kebing,ZHANG Di,LI Qi,et al. Experimental Study on Longitudinal Resistance of CWR Fasteners on Bridge[J].Railway Engineering,2024,64(4):34-38.
[2]朱志辉,李晓光,闫铭铭,等.基于扣件阻力试验的高速铁路桥上无缝线路纵向力研究[J].中南大学学报(自然科学版),2020,51(7):1966-1976.ZHU Zhihui, LI Xiaoguang, YAN Mingming, et al.Longitudinal Force of CWR on Highspeed Railway Bridge Based on Fastener Resistance Test[J]. Journal of Central South University(Science and Technology),2020,51(7):1966-1976.
[3]闫子权,李彦山,李子睿,等.小阻力扣件节点数量对钢轨纵向阻力的影响[J].铁道建筑,2017,57(2):113-115,119.YAN Ziquan,LI Yanshan,LI Zirui,et al. Influence of Node Number of Small Resistance Fastener on Rail Longitudinal Resistance[J]. Railway Engineering,2017,57(2):113-115,119.
[4]ZHANG J,WU D J,LI Q,et al.Experimental and Numerical Investigation of Track-Bridge Interaction for a Long-span Bridge[J].Structural Engineering and Mechanics,2019,70(6):723-735.
[5]闫斌,付贺鑫,余丽梅,等.大跨度拱桥上无缝线路纵向力分布规律研究[J].铁道学报,2023,45(3):9-15.YAN Bin,FU Hexin,YU Limei,et al. Longitudinal Force Distribution of CWR on Long-span Arch Bridge[J].Journal of the China Railway Society,2023,45(3):9-15.
[6]蔡小培,钟子杰,刘万里,等.连续刚构系杆拱桥-无缝线路体系适应性研究[J].铁道科学与工程学报,2024,21(11):4478-4486.CAI Xiaopei,ZHONG Zijie,LIU Wanli,et al.Adaptability of Continuous Rigid Structural Tied Arch Bridge Continuous Welded Rail System[J]. Journal of Railway Science and Engineering,2024,21(11):4478-4486.
[7]张铭,蒋金洲.无缝线路钢轨纵向力及锁定轨温检测系统(NTS)的试用[J].铁道建筑,2010,50(8):110-114.ZHANG Ming,JIANG Jinzhou. Trial Application of the Detection System(NTS)for Longitudinal Force and Neutral Temperature of Continuously Welded Rails[J]. Railway Engineering,2010,50(8):110-114.
基本信息:
DOI:
中图分类号:U213.9
引用信息:
[1]吴军,张杨,杨城,等.大跨连续刚构拱组合桥上无缝线路状态及实际锁定轨温观测[J].铁道建筑,2025,65(12):59-63.
基金信息:
中国国家铁路集团有限公司科技研究开发计划(N2022G024)