nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 05, v.65 63-69
大跨度铁路单索面预应力混凝土矮塔斜拉桥主梁局部受力分析
基金项目(Foundation): 中国中铁股份有限公司科技研究开发计划(2021-专项-02); 中铁工程设计咨询集团有限公司科技开发课题(研2021-25); 四川蜀道铁路投资集团有限责任公司科技创新项目(SDTL2023ZD001)
邮箱(Email):
DOI:
摘要:

为了解大跨度铁路单索面预应力混凝土矮塔斜拉桥主梁局部受力行为,依托隆叙铁路(隆昌—叙永)沱江特大桥主桥工程,建立全边跨三维实体有限元模型,分析S1、S11号斜拉索索力最大工况下边支点反力和主梁截面应力,并与全桥三维杆系有限元模型的分析结果进行对比,验证实体有限元模型的正确性,进而分析边支点隔板、索梁锚固结构和斜杆受力情况,以及斜杆箱梁剪力滞效应。结果表明:边支点隔板、索梁锚固结构和斜杆均以受压为主,局部有水平可控的拉应力,通过合理配置普通钢筋可保证结构受力安全;除边支点和固结约束边界附近箱梁外,有索区和无索区斜杆箱梁剪力滞系数在0.91~1.14;创新地采用单索面、轻量化斜杆替代索梁锚固横梁和隔板等新技术,结构传力明确,安全可靠。

Abstract:

To investigate local stress behavior of the main girder of long-span railway prestressed concrete extradosed cable-stayed bridge with a single cable plane, relying on the project of Tuojiang bridge's main bridge of LongchangXuyong railway, the three-dimensional solid finite element model of the side span was established. The reactions at the side supports and the cross-sectional stresses of the main girder under the maximum cable force conditions of stay cables S1 and S11 were analyzed, and were compared with the analysis results of the three-dimensional rod system finite element model of the whole bridge to verify the correctness of the solid finite element model. Furthermore, the stress conditions of the side support diaphragms, cable-girder anchorage structures, and diagonal rods, as well as the shear lag effect of box girder with diagonal rods were analyzed. The results indicate that the side support diaphragm, cablegirder anchorage structure and diagonal rods are primarily under compression, with controllable localized tensile stress, and their safety can be ensured through reasonable reinforcement configurations. Except for box girder near the side support and fixed-boundary constraints, the shear lag coefficient of box girder with diagonal rods in cable and non-cable zones range between 0.91 and 1.14. Innovative use of single-cable plane and lightweight diagonal rods instead of cablegirder anchoring beams or diaphragms provides clear load transfer, ensuring structural safety and reliability.

参考文献

[1]严冰.中国铁路营业里程突破16万公里[N].人民日报海外版,2024-09-15(002).

[2]陈良江,文望青.中国铁路桥梁:1980—2020[M].北京:中国铁道出版社,2020.

[3]宋子威,王德志,薛兆钧,等.铁路混凝土部分斜拉桥设计综述及发展方向[J].交通科技,2015(6):28-31.

[4]王凯.高速铁路单索面矮塔斜拉桥的静动力性能[J].铁道建筑,2022,62(5):82-86.

[5]陈怀智,张欣欣.池黄高速铁路大跨度多塔矮塔斜拉桥总体设计[J].铁道建筑,2022,62(3):94-98.

[6]胡豪,施洲.高速铁路矮塔斜拉桥运营阶段收缩徐变效应分析[J].铁道勘察,2022,48(6):128-133.

[7]马雅林,任万敏,朱敏,等.成昆铁路矮塔斜拉桥索梁锚固区模型试验研究[J].铁道建筑,2022,62(2):83-87.

[8]杜京涛,尹春燕.预应力混凝土矮塔斜拉桥0号块钢束布置方案研究[J].铁道勘察,2024,50(2):98-103.

[9]邓江涛.高速铁路矮塔斜拉桥墩塔梁固结段局部应力分析与验证[J].铁道标准设计,2016,60(6):43-48.

[10]王兰,潘权,李超,等.单索面斜拉桥斜腹杆箱梁扭转与畸变效应研究[J/OL].中外公路,1-11[2024-09-18].https://link.cnki.net/urlid/43.1363.U.20240517.1706.002.

[11]高策,刘永锋,时代,等.大跨度铁路单索面预应力混凝土斜拉桥设计关键技术及创新——以隆叙铁路沱江特大桥主桥设计为例[J].铁道标准设计,2023,67(12):97-102,120.

[12]刘晓春,符应文,李海华,等.大跨铁路混凝土梁矮塔斜拉桥结构体系研究[J].桥梁建设,2024,54(4):134-140.

[13]卢绍颖.W形腹板箱梁剪力滞效应分析[D].大连:大连理工大学,2019.

[14]方健,蒋甫海,袁胜峰,等.单索面斜拉桥混凝土宽箱主梁受力特性分析[J].中国市政工程,2021(2):93-97.

[15]余鹏,焦亚萌.铁路矮塔斜拉桥W形腹板箱梁力学性能分析[J].铁道标准设计,2024,68(5):68-74.

[16]罗旗帜.基于能量原理的薄壁箱梁剪力滞理论与试验研究[D].长沙:湖南大学,2005.

基本信息:

DOI:

中图分类号:U448.27;U441.5

引用信息:

[1]胡豪,高策,刘永锋等.大跨度铁路单索面预应力混凝土矮塔斜拉桥主梁局部受力分析[J].铁道建筑,2025,65(05):63-69.

基金信息:

中国中铁股份有限公司科技研究开发计划(2021-专项-02); 中铁工程设计咨询集团有限公司科技开发课题(研2021-25); 四川蜀道铁路投资集团有限责任公司科技创新项目(SDTL2023ZD001)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文