112 | 0 | 22 |
下载次数 | 被引频次 | 阅读次数 |
针对地铁小半径曲线轮轨精准润滑技术,考虑不同轨顶与轨侧摩擦因数匹配工况,对地铁曲线不同位置的轮轨界面综合摩擦因数进行优化。在SIMPACK中建立地铁车辆动力学模型,引入轮轨界面综合摩擦因数管理模型,分析曲线不同位置轨顶与轨侧摩擦因数匹配工况对轮轨磨耗性能、轮对冲角、表面疲劳指数和脱轨系数的影响规律。使用熵权TOPSIS法对4个评价指标建立多目标优化模型,实现曲线不同位置的轮轨界面综合摩擦因数优化。结果表明:缓中点Ⅰ、缓圆点和曲中点的综合性能同时受轨顶和轨侧摩擦因数的影响,圆缓点的综合性能主要受轨侧摩擦因数的影响,缓中点Ⅱ的综合性能主要受轨顶摩擦因数的影响;缓中点Ⅰ、缓圆点、曲中点、圆缓点和缓中点Ⅱ的最佳摩擦因数组合(轨顶摩擦因数/轨侧摩擦因数)分别为0.20/0.35、0.20/0.10、0.25/0.10、0.20/0.20和0.20/0.30。
Abstract:For the precise lubrication technology of small radius curve wheel rail in subway, considering different matching conditions of friction coefficient between rail top and rail side, the comprehensive friction coefficient of wheelrail interface at different positions of subway curve was optimized. A subway vehicle dynamics model in SIMPACK was establish, a comprehensive friction coefficient management model for the wheel-rail interface was introduced, and the influence of friction coefficients matching condition between the rail top and rail side at different positions of the curve on the wheel-rail wear performance, wheel hedge angle, surface fatigue index, and derailment coefficient was analyzed.A multi-objective optimization model for four evaluation indicators using the entropy weight TOPSIS method was established to optimize the comprehensive friction coefficient of the wheel-rail interface at different positions on the curve. The results show that the comprehensive performance of the gradual midpoint I, the gradual circular point and the curved midpoint are simultaneously affected by the friction coefficients of the rail top and the rail side. The comprehensive performance of the circular gradual point is mainly affected by the friction coefficient of the rail side, while the comprehensive performance of the gradual midpoint II is mainly affected by the friction coefficient of the rail top. The optimal friction coefficient combination, which is rail top friction coefficient/rail side friction coefficient, for the gradual midpoint I, gradual circular point, curve midpoint, circular gradual point, and gradual midpoint Ⅱ is 0.20/0.35, 0.20/0.10, 0.25/0.10, 0.20/0.20 and 0.20/0.30, respectively.
[1]温静,于浩,陈嵘.摩擦因数对地铁小半径曲线轮轨接触特性的影响[J].铁道建筑,2020,60(8):130-134.
[2]林凤涛,翁涛涛,杨洋,等.道岔辙叉区磨耗车轮动力学分析及摩擦因数影响[J].铁道科学与工程学报,2023,20(4):1316-1325.
[3]LI H X,LI L. Influence of Wheel Profile Wear Coupled with Friction Coefficient on the Dynamic Response of Subway Vehicles[J].Industrial Lubrication and Tribology,2023,75(6):679-690.
[4]周宇,韩延彬,木东升,等.摩擦系数对滚动接触疲劳裂纹萌生和磨耗影响[J].同济大学学报(自然科学版),2018,46(10):1392-1402.
[5]刘堂辉,姚典,张鹏飞,等.地铁曲线波磨地段轮轨动力特性影响因素[J].铁道建筑,2022,62(3):75-79.
[6]VOLODYMYR H,ANDRII H,YURII M. Research on the Dynamic Processes of Vehicles and an Arbitrary Configuration Rail Track, Influencing the Side Wear of the Rail Head and Wheel Flange Contact Surfaces at Different Values of Friction Coefficient Between them[J/OL]. IOP Conference Series:Earth and Environmental Science,2022,970(1):012029[2024-05-23].https://doi.org/10.1088/1755-1315/970/1/012029.
[7]徐凯,李芾,吴文逸,等.高速铁路小半径曲线钢轨侧磨研究[J].铁道学报,2021,43(2):45-51.
[8]李倩,周子伟,刘禹清,等.曲线线路重载机车轮缘裂纹损伤及影响因素研究[J].应用力学学报,2024,41(1):68-76.
[9]李亨利,李芾.轮轨摩擦控制对重载货车轮轨磨耗的影响[J].中国铁道科学,2016,37(5):94-101.
[10]罗国伟,李伟.重载铁路钢轨润滑及摩擦控制研究[J].铁道建筑,2011,51(4):114-116.
[11]张念,张建峰,于贵武,等.大秦铁路重载钢轨踏面摩擦控制试验[J].中国铁路,2011(12):20-22.
[12]宋靖东.固体摩擦调节剂和润滑剂对轮轨黏着与损伤性能影响[D].成都:西南交通大学,2019.
[13]MA W H,SONG R R,LUO S H.Study on the Mechanism of the Formation of Polygon-shaped Wheels on Subway Vehicles[J]. Proceedings of the Institution of Mechanical Engineers,Part F:Journal of Rail and Rapid Transit,2016,230(1):129-137.
[14]蒋荣超,刘大维,王登峰.基于熵权TOPSIS方法的整车动力学性能多目标优化[J].机械工程学报,2018,54(2):150-158.
基本信息:
DOI:
中图分类号:U231;U211.5
引用信息:
[1]朱爱华,张财胜,张帆等.地铁曲线不同位置轮轨界面综合摩擦因数优化[J].铁道建筑,2025,65(05):49-56.
基金信息:
北京市自然科学基金(L241038); 国家自然科学基金(52272385)