35 | 0 | 49 |
下载次数 | 被引频次 | 阅读次数 |
为提升弹性支承块式无砟轨道在重载铁路中的轨距保持能力,本文建立全参数化计算模型,结合单节点实尺模型试验与有限元仿真方法,系统分析了轨下垫板垂向刚度、扣件横向刚度、调高量、支承块埋置深度、套靴刚度等关键参数对轨距保持能力的影响规律。结果表明:支承块埋置深度、轨下垫板垂向刚度及套靴侧面刚度的敏感性系数分别为0.616 3、0.609 9和0.501 5,高于其他结构参数,是决定轨距变化幅度的主控因素。在30 t轴重条件下,为提高结构稳定性,建议轨下垫板垂向刚度控制在140~160 kN/mm,扣件组装横向刚度不低于180 kN/mm,块下垫板刚度取60~90 kN/mm,套靴侧面刚度不低于400 kN/mm。为改善结构局部变形,提出套靴局部加设环形箍筋并调整橡胶有效受力面积的优化措施。
Abstract:In order to enhance the capacity of elastic support block ballastless track to maintain gauge stability in heavy haul railways, this paper established a fully parameterized calculation model, and combined single node full-scale model tests and finite element simulation methods to systematically analyze the influence of key parameters such as vertical stiffness of under-rail pad, lateral stiffness of fasteners, height adjustment, burial depth of support blocks, and sleeve stiffness on gauge retention capacity. The results show that the sensitivity coefficients of the burial depth of the support block, the vertical stiffness of the under-rail pad, and the lateral stiffness of the sleeve are 0.616 3, 0.609 9, and 0.501 5, respectively, which are higher than other structural parameters and are the main controlling factors determining the change magnitude of track gauge. Under the condition of a 30 t axle load and in order to improve structural stability, it is recommended to control the vertical stiffness of the under-rail pad between 140 ~ 160 kN/mm, the lateral stiffness of the fastener assembly not less than 180 kN/mm, the stiffness of the under-block pad between 60 ~90 kN/mm, and the lateral stiffness of the sleeve not less than 400 kN/mm. To improve the local deformation of the structure, an optimization measure is proposed to locally add annular stirrups to the sleeves and adjust the effective stress area of the rubber.
[1]李特.重载铁路弹性支承块式无砟轨道动力响应影响规律研究[D].长沙:中南大学,2022.
[2]ZENG Z P, PENG G Z, GUO W J, et al. Research on Mechanical Performance of Improved Low Vibration Track and its Feasibility Analysis for Heavy-haul Railway Applications[J].Applied Sciences,2021,11(21):10232.
[3]杜香刚,王继军,王卫东,等.弹性支承块式无砟轨道钢轨抗倾翻性能全参数化计算方法[J].铁道科学与工程学报,2024,21(4):1435-1444.
[4]曾志平,胡广辉,王卫东,等.弹性支撑块式无砟轨道力学特性研究[J].铁道工程学报,2021,38(1):25-31.
[5]杜香刚,尤瑞林,刘伟斌,等.30 t轴重重载铁路隧道内无砟轨道结构选型试验研究[C]//中国铁道学会.铁路重载运输技术交流会论文集.北京:中国铁道出版社,2014:322-326.
[6]吴春,陈宪麦.改进弹性支承块式无砟轨道力学性能研究[J].铁道科学与工程学报,2023,20(4):1337-1346.
[7]蔡成标,徐鹏.弹性支承块式无砟轨道结构参数动力学优化设计[J].铁道学报,2011,33(1):69-75.
[8]韩啸,陈兵,徐煜航,等.土体洞室开挖的力学参数敏感性分析[J].华北水利水电大学学报(自然科学版),2019,40(5):76-82.
基本信息:
DOI:
中图分类号:U213.244
引用信息:
[1]苗霈昂,王继军,杜香刚等.重载铁路大调整量弹性支承块式无砟轨道轨距保持能力关键参数敏感性分析[J].铁道建筑,2025,65(05):22-27.
基金信息:
中国铁道科学研究院集团有限公司基金(2023YJ228)